netbook
desktop
mobile
tablet-landscape
tablet
phone-landscape
phone
Research to Prevent Blindness

Researchers Identify Treatment Target for Blinding Retinal Diseases

New research published today in Cell Reports identifies a potential treatment target for blinding diseases such as retinitis pigmentosa and advanced dry age-related macular degeneration. In the study, researchers at Washington University in St. Louis School of Medicine (supported in part by an unrestricted Research to Prevent Blindness grant to the Department of Ophthalmology) explored how the retina's photoreceptors—the rods and cones responsible for detecting light, color, contrast, and sharpness—are damaged over the course of these diseases.

"We believe we have uncovered a unifying pathway involved in inflicting severe damage to and even causing the death of rods and cones," said Jonathan B. Lin, an MD/PhD student and co-first author with Shunsuke Kubota, MD, PhD. "These findings should help us develop treatments for retinal disorders, regardless of what's causing them."

Lin works in the laboratory of senior investigator Rajendra S. Apte, MD, PhD, the Paul A. Cibis Distinguished Professor of Ophthalmology and Visual Sciences, who is a recipient of an RPB Physician-Scientist Award and also recently published key findings on the Zika virus. In a series of experiments in mice and retinal cells, the researchers identified a key molecule —NAD — in the cascade that leads to the death of the retina's rods and cones.

MD/PhD student Jonathan Lin (left) and Rajendra S. Apte, MD, PhD, of Washington University School of Medicine in St. Louis. Photo credit: Robert Boston / Washington University

Lin, Apte and colleagues found that defects in the same NAD pathway appeared to be involved in several different diseases of the retina. When they treated damaged photoreceptor cells in mice with a second molecule called NMN — a precursor molecule that boosts levels of NAD — the cells' degeneration ceased and vision was restored.

"This is exciting because we may have found a reason why these highly metabolically active cells are susceptible to damage and death when the NAD pathway does not function optimally," said Apte, also a professor of developmental biology and neuroscience and of medicine.

The pathway offers a promising target for therapies for multiple retinal diseases, including retinitis pigmentosa, one of the leading causes of blindness that impairs vision over many years and for which there is currently no cure.

Learn more about the study from the Washington University in St. Louis School of Medicine press release and podcast

Related News: Top Story

test tubes

The Time is Now to Protect the National Eye Institute

The existence of the National Eye Institute, the most important source of funding for vision research in the U.S., is being threatened.

Read More

 
eye brain connection

RPB Grantees Contribute to Eye Transplantation Effort

The ARPA-H THEA project takes on an exciting challenge.

Read More

 
microscope

Faulty Vision for US Eye Research

An important message from an RPB Trustee

Read More

 
Giving Tuesday logo

Giving the Gift of Sight

#GivingTuesday kicks off with a donation match

Read More

 
eye photo

New Grants for Big Data Research to Improve Vision Care

Read More

 
RPB Logo

Research to Prevent Blindness Opens Applications for Vision Research Grants

The awards offered cover a wide variety of topics in vision science, including glaucoma, age-related macular degeneration, retinal diseases, and many more.

Read More

 

Subscribe

Get our email updates filled with the latest news from our researchers about preventing vision loss, treating eye disease and even restoring sight. Unsubscribe at any time. Under our privacy policy, we'll never share your contact information with a third party.